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Welcome to our lab!

This is the on-boarding guide for interdisciplinary research on causality. It is mandatory reading
for all interns, master’s students, and PhD students in CAUSAL lab@QSUFE. We first provide
instructions on preparing for causality research, and then directly present frontier topics in causality
research to promote further comprehension and collaboration.

Disclaimer: This document reflects the primary research directions of our lab. It does not
represent the only or the optimal pathway to learning causal inference.

1 Getting Started with Causal Inference: A Guide for Stu-
dents in CS, Statistics, and Economics

We follow a fundamental causal learning progression: from introductory to proficient, and ultimately
to advanced mastery. I will outline tailored learning paths for two groups: CS(ML) and Stats(Econ).
Requirement: Each Student with either a CS(ML) or Stats(Econ) background are re-
quired to select and thoroughly read at least one resource from Section 1.1 and Section 1.2,
respectively.
1.1 Introductory part
e [PM18] The Book of Why: The New Science of Cause and Effect (CS & Stats).

e [HR22] What If: The Counterfactuals of Modern Epidemiology (CS & Stats).

1.2 Formal part
e [Din24] The First Course in Causal Inference (Stats).
e [WB24] Causal Inference: A Statistical Learning Approach (Stats).
e https://web.stanford.edu/~swager/stats361.pdf (CS & Stats).

e Online courses of ML and Causality:

— Susan Athey: https://wuw.gsb.stanford.edu/faculty-research/labs-initiatives/

sil/research/methods/ai-machine-learning/short-course?utm_source=chatgpt.com(CS

& Stats).

— Brady neal: https://www.bilibili.com/video/BV1nZ4y1K781i/7vd_source=ace5e5a325c2dff9ac92e50fa21

& Stats).

1.3 Advanced part

e Online causality inference seminar(YouTube): https://www.youtube.com/channel/UCii0j5GSES6uw21kfXnxj3A

(CS & Stats).

e Literature: Students could read from the following literature to follow up on frontiers:
Journal: JASA, AOS, JRSSB, Biometrika, PNAS;
Conference: ICML, NeurIPS, ICLR, UAI, AISTATS, COLT


https://web.stanford.edu/~swager/stats361.pdf
https://www.gsb.stanford.edu/faculty-research/labs-initiatives/sil/research/methods/ai-machine-learning/short-course?utm_source=chatgpt.com
https://www.gsb.stanford.edu/faculty-research/labs-initiatives/sil/research/methods/ai-machine-learning/short-course?utm_source=chatgpt.com
https://www.bilibili.com/video/BV1nZ4y1K78i/?vd_source=ace5e5a325c2dff9ac92e50fa210787e
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Additional comment:

e If you come from a mathematical major, you should also take the class on (high-dimensional)
statistics and probability; otherwise, you are required to run the code demo in one of the above
course links.

e You should develop an intuitive understanding of the statistical ideas behind causality and be able
to critically compare the strengths and limitations of Judea Pearl’s causal graphical framework
and Donald Rubin’s potential outcomes framework (refer to [RR13]).

2 Frontier Research Topics under Active Development

In the study of causality, on the one hand, aiming at the real-world setting, there are two kinds of
methods: observational studies and experimental design. On the other hand, aiming at the
objectives, there are three central pillars: Identification, Estimation, and Learning. Each corresponds
to a classical type of causal inference task!.

However, we do not wish to define our causal research merely through the conventional paradigm of
scenario-based or goal-specific classifications. The long-term vision of our lab is to build a unified and
simple causal framework, combined with disciplinary researchers, that widely empowers both theory
and real-world applications:

e On the theoretical side: to write killer papers under the simplest and most elegant assumptions;

e On the applied side: to write healer papers upon real-world pain points by tackling the most
pressing and complex challenges in industry/society.

Inspired by it, we separate the taste of research into the progressive parts: rethink, innovate,
embrace, and apply, focusing on the procedure input, structure, and output. I have listed the
key papers that are recommended to be read.

2.1 Rethink Assumptions

Challenge conventional wisdom and commonly held assumptions (investigate the definitions and im-
plications of these assumptions on your own). See the video 2.

e Violate the OVERLAP assumption [KSU24|, [CKM*25] (https://www.youtube.com/watch?
v=LJToFKBxCKE), [JRYW22].

e Violate the SUTVA assumption [Leu22|, [LWZ24], [MT21], [Viv25] (also other series of
papers of Davide Viviano).

e Violate the UNCONFOUNDEDNESS assumption [CKM™*25], [Zha], [KMU21].

2.2 Innovate with Statistical/ML Methods

Modern causal frameworks are driven by new statistical and ML innovations.
e Conformal prediction [LC21].
e Prediction-powered inference [WSF*24].
e (Prediction and then) Optimization [BM25], WHBG24], [EG22].
e Optimal transport [JLS23], [LGBG25].
¢ Representation learning (including negative part) [MFF23], [MFSF25].
e Mini-max optimality [JS24].
¢ Online learning and trade-off [SLW23], [ZW24], [NFBR25].

11dentification This addresses the fundamental question: “Can the causal quantity of interest be expressed as a func-
tion of the observed data distribution under certain assumptions?” It focuses on deriving conditions under which causal
effects are identifiable, often using tools like causal graphs, do-calculus, and potential outcomes. Estimation Once a
causal estimand is identified, estimation concerns “How can we construct statistical estimators to recover it from data?”
This step bridges theory and practice, involving methods such as inverse probability weighting, g-computation, doubly
robust estimators, and semiparametric theory. Learning Learning moves beyond point estimation to ask “How can we
make optimal or robust decisions based on causal knowledge?” This includes topics like policy learning, individual-
ized treatment rules, off-policy evaluation, and online/active experimentation, often leveraging machine learning and
reinforcement learning frameworks.

2(https://www.youtube.com/watch?v=LJIIoFKBxCKE)
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2.3 Embrace Constraints

Focus on real-world constraints and make reasonable solutions.
eNoisy scenario [GYWJ22], [ZDC*23].
eActive sampling (Limited samples) [KOKI24], [ZWLL], [WCG™25], [HSSZ24].
e Privacy [OA25], [SHF25].
e Functional data [THZY25].
e Time delay [ZBMC™'25].
e Heterogeneity and fusion [DY25], [LD24], [XKP*23], [LRVP25].

2.4 Apply to Impact

Apply to the real world.
e Foundation model(LLM) [JYG™'25], [GJR24], [PLOZ24].
e Multi agent and game [LWL"24], [LWW ], [SNH24], [MWX21], [ATM21].
e Recommendation system [ZHHJ24|, [BPT18], [YLNT23].
e Ride-sharing [DWZ'24].
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